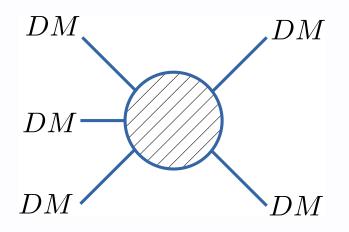
Dark Isosinglet Mesons in Sp(4) Gauge Theory with $N_f=2$

Jong-Wan Lee, Axel Maas Felix Pressler, **Fabian Zierler**

LATTICE 2022, Bonn, 8 August 2022

$Sp(2N)_c$ Dark Matter models


- $N_f=2$ provides a minimal SIMP model 2 massive fundamental fermions in pseudoreal repr. \Rightarrow 5 pseudo-Goldstones π
- Dark pions π are DM candidates.

WIMPs: $2\mathrm{DM} o 2\mathrm{SM} \ \Rightarrow m_D pprox \mathrm{TeV}$

SIMPs: $3\mathrm{DM} o 2\mathrm{DM} \Rightarrow m_D pprox \mathcal{O}(100)\mathrm{MeV}$ [1]

Dark Matter Self-Scattering

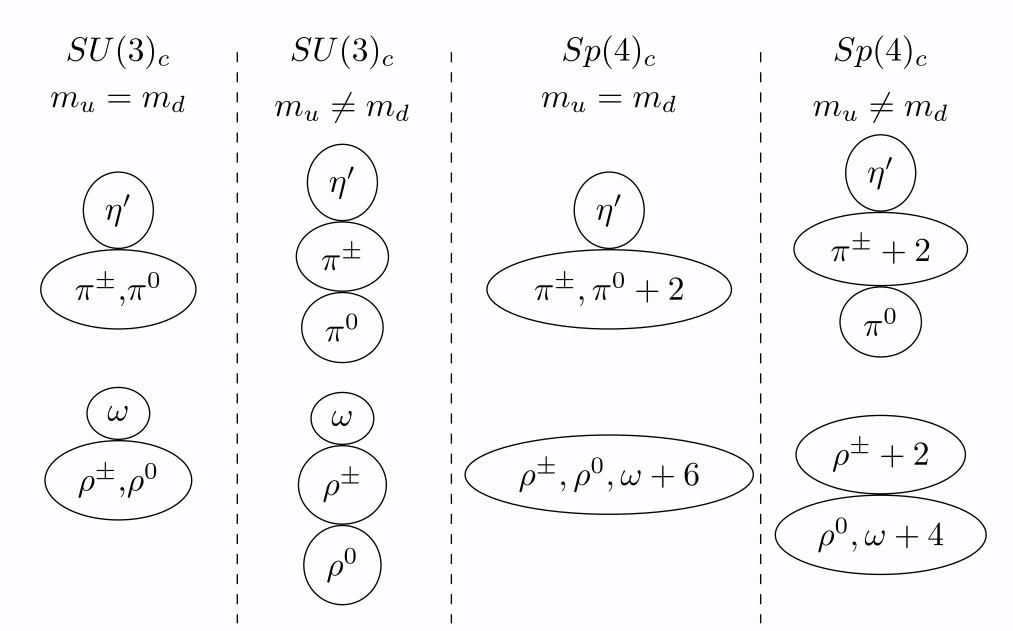
- ullet $3\pi
 ightarrow 2\pi$ scattering sets the DM relic density
- ullet DM self-interactions can address structural issues $2\pi o 2\pi$ could address "cusp vs. core" problem

Dark sector Lagrangian

- pseudoreal fermion repr. of the "dark quarks"
- Both dark quarks are massive
- Currently phenomenologically preferred regime $\Rightarrow m_\pi pprox \mathcal{O}(100~{
 m MeV})$ (relic density: $3\pi \to 2\pi$) $\Rightarrow 2\pi \to 2\pi$ cross-section constrained [1] velocity dependence for DM structure problems?

$$\mathcal{L}_{ ext{dark}} = -rac{1}{4}F_{\mu
u}F^{\mu
u} + \sum_{f=u,d}ar{\psi}_f(i
ot\!\!D + m_f)\psi_f$$

Global symmetries

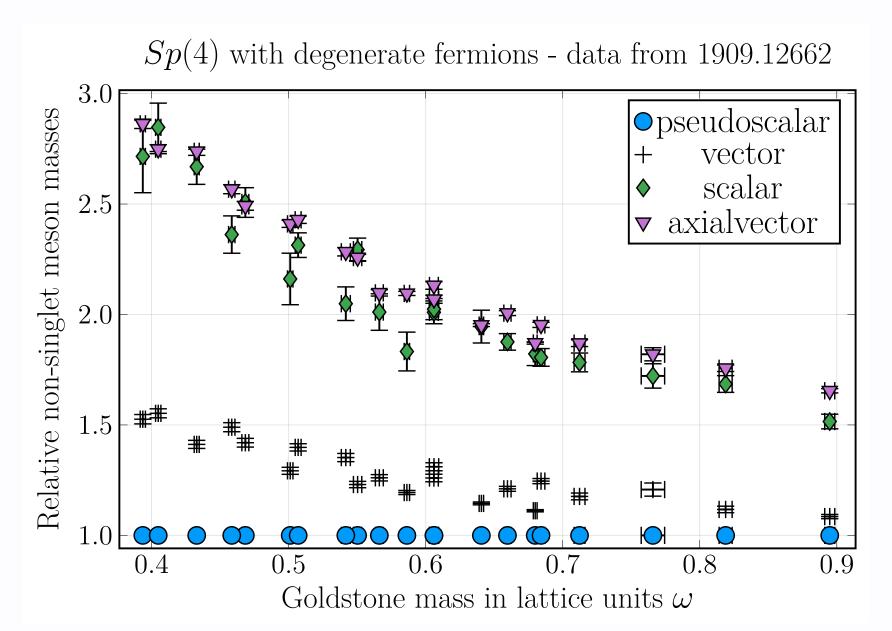

$$\begin{array}{c|c} \mathbf{QCD} \text{ with } N_f = 2 \\ \hline & U(2) \times U(2) \\ \hline & \text{axial anomaly} & m_u = m_d = 0 \\ \hline & SU(2) \times SU(2) \times U(1) \\ \hline & \text{chiral symmetry breaking} & m_u = m_d = 0 \\ \hline & and/or \text{ explicit breaking} & m_u = m_d \neq 0 \\ \hline & SU(2) \times U(1) \\ \hline & SU(2) \times U(2) \\ \hline & SU(2) \times SU(2) \\ \hline & SU(2) \times SU(2) \\ \hline \end{array}$$

Singlet mesons in Sp(4) with $N_f=2$

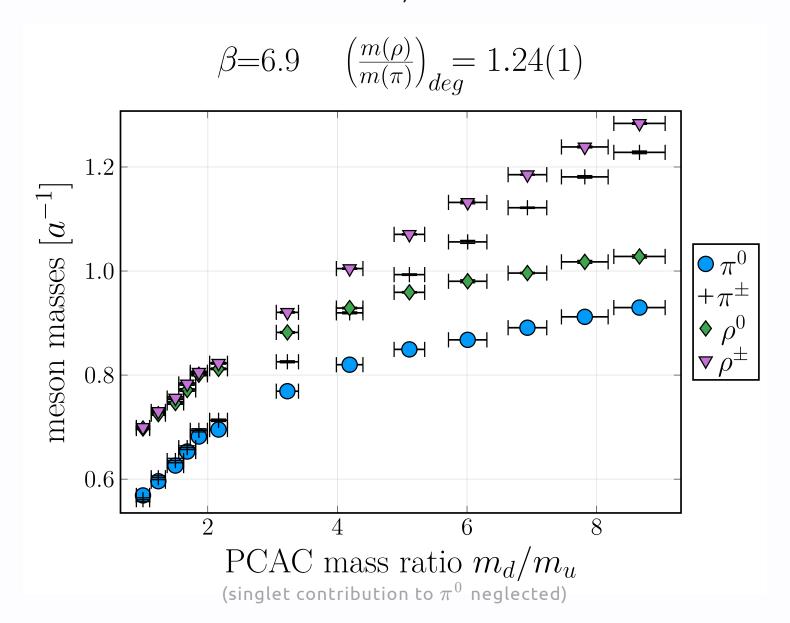
- $m_u\!=\!m_d$: Every 5-plet has a singlet equvivalent e.g. pseudoscalar η' , scalar σ/f_0
- No mesonic singlets for J^P associated with 10-plet e.g. the vector meson ω/ϕ is part of multiplet **[1]**

• $m_u
eq m_d: 5 ent{-plet} o 4+1$, $10 ent{-plet} o 4+6$ e.g. π^0 becomes a singlet **[2]**

Pseudoscalar (PS) and vector (V) multiplets



Singlets are relevant for DM!


- ullet Not protected by symmetries \Rightarrow decay into SM
- Useful in construction of EFTs?
- Can be involved in scattering processes

ullet So far never studied in Sp(2N) gauge theory on the lattice

ullet Non-singlets: $m_u = m_d$ [1909.12662]

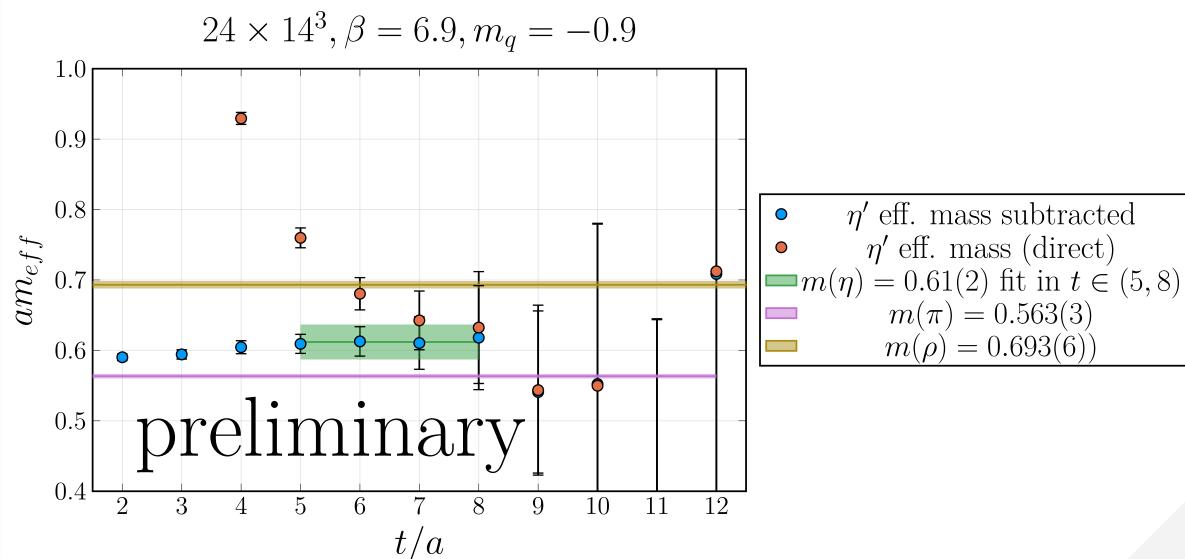
• Non-singlets: $m_u eq m_d$ [2202.05191]

Pseudoscalar singlet η' in other theories

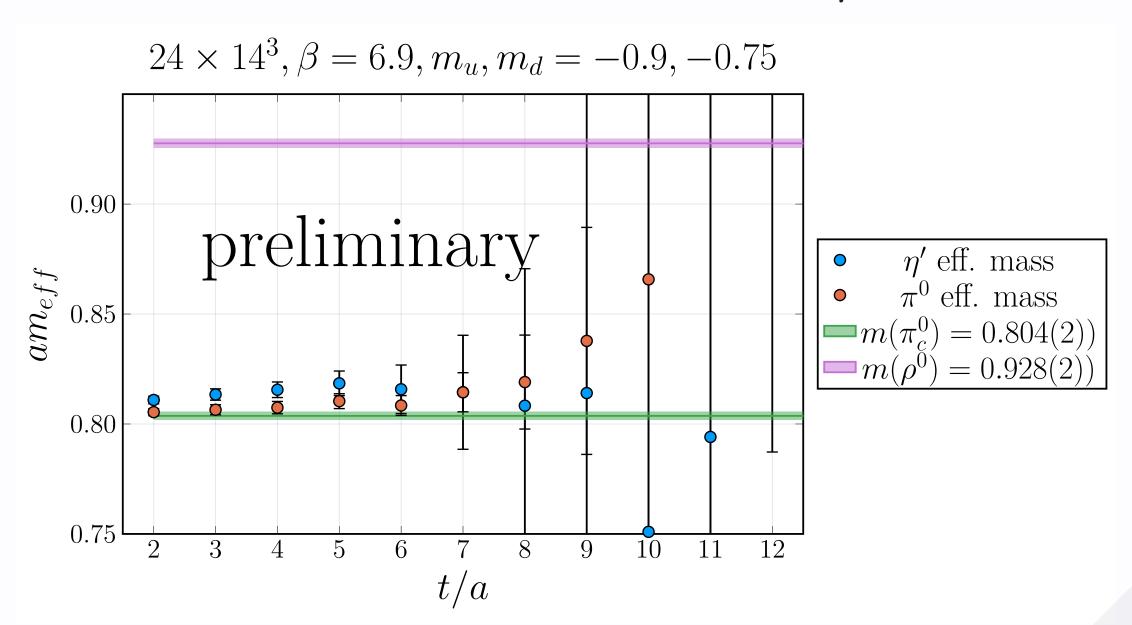
- What about singlet mesons in other theories?
- ullet Two-flavour QCD ($SU(3)_c$ with $N_f=2$) [1]
 - \circ Different regimes with $m_{\eta'}pprox m_
 ho$ and $m_{\eta'} < m_
 ho$
 - \circ Absence of strange: $m_{\eta'}$ decreases by $pprox 200 {
 m MeV}$
- $SU(2)_c$ results are available (light quarks) [2]
 - \circ chiral limit: $m_\pi < m_
 ho pprox m_{\eta'}$

Strategy: Start with η' (and π^0 for $m_u eq m_d$)

- DM candidates are pseudoscalar $\Rightarrow \eta'$ possibly relevant for EFT
- ullet Scalar singlet σ/f_0 are technically involved \Rightarrow identify useful variance reduction techniques
- Configurations and measurements using HiRep [1]


Obtaining a signal

- Diluted noisy sources (Z_2 noise, spin dilution) [1]
- Excited state subtraction in connected pieces [2]
- Unbiased disconnected correlator as in [3]
- Smaller and coarser lattices, heavier fermions


Downsides and current limitations:

- No analysis of systematics
 - \Rightarrow finite volume and spacing effects expected
- Only a few timeslices of signal

• η' : Degenerate fermions with $m_ ho/m_\pi=1.24(1)$

ullet Non-degenerate: π^0 and η'

Self-interactions: Pion scattering length $a_{ m 0}$

- $egin{aligned} \bullet & ext{First estimate on the ensemble } m_
 ho/m_\pi = 1.24(1) \ eta = 6.9, 24 imes 14^3, m_u = m_d : \end{aligned}$
- Energy shift extracted as in [1] from

$$R(t) = rac{C_{\pi\pi}(t) - C_{\pi\pi}(t+1)}{C_{\pi}^2(t) - C_{\pi}^2(t+1)}$$

• no systematics, small lattice, not a full analysis!

$$a_0 = 1.0(5)$$

Experimental constraints: DM self-interaction

- ullet current upper limits at $\sigma/m_D < 0.19 {
 m cm}^2 {
 m g}^{-1}$ [1] and $\sigma/m_D < 0.13 {
 m cm}^2 {
 m g}^{-1}$ [2]
- ullet our rough analysis suggests $m_D \geq 100 {
 m MeV}$
 - compatible with relic density constraints
 - \circ $\sigma(v)$ for core-vs-cusp problem might be needed

Summary/Conclusion

- ullet First look at isosinglet mesons in Sp(4)
 - o important in composite DM models
 - o not always present e.g. no vector isosinglet
 - \circ first lattice results for η' and π^0
- ullet Estimate on the π scattering length
 - our ensembles are of phenomenological interest

Early, exploratory study. A lot more to do.

Thank you!