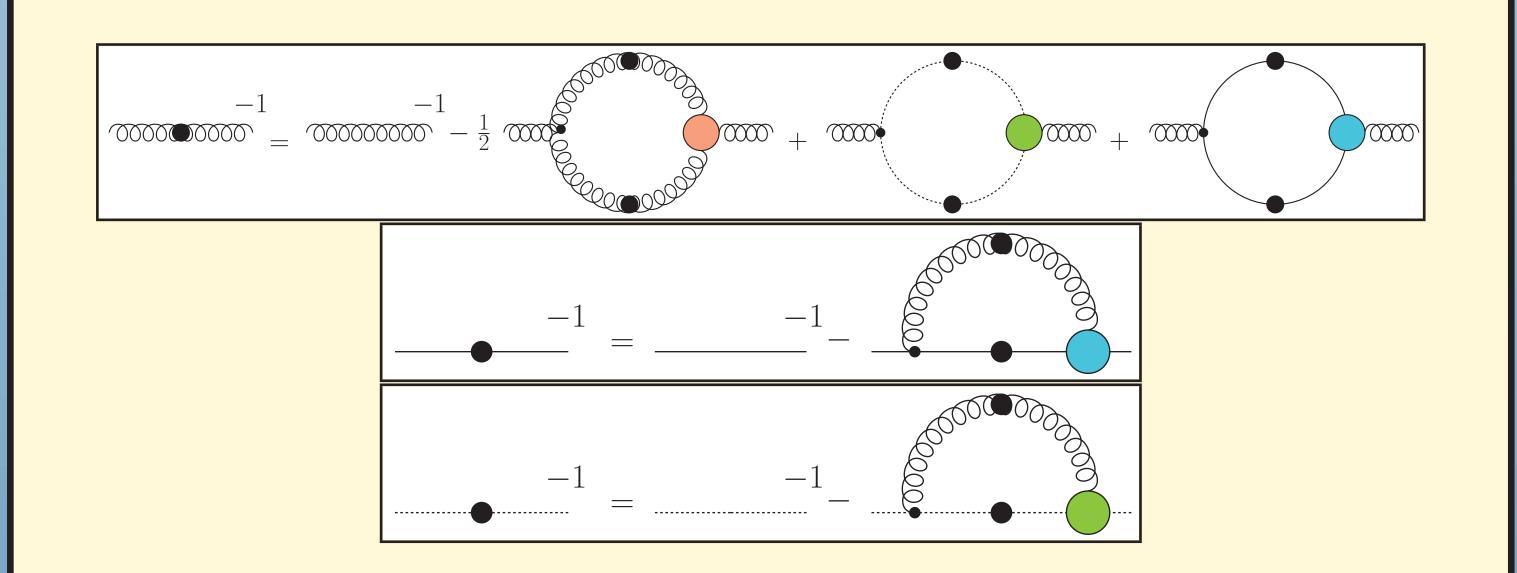
Quark, gluon and ghost propagator in large- N_f Landau gauge QCD F. Zierler, M. Adrien, H. Sanchis Alepuz, R. Alkofer

Institute of Physics, University of Graz

Dyson-Schwinger equations (DSEs)

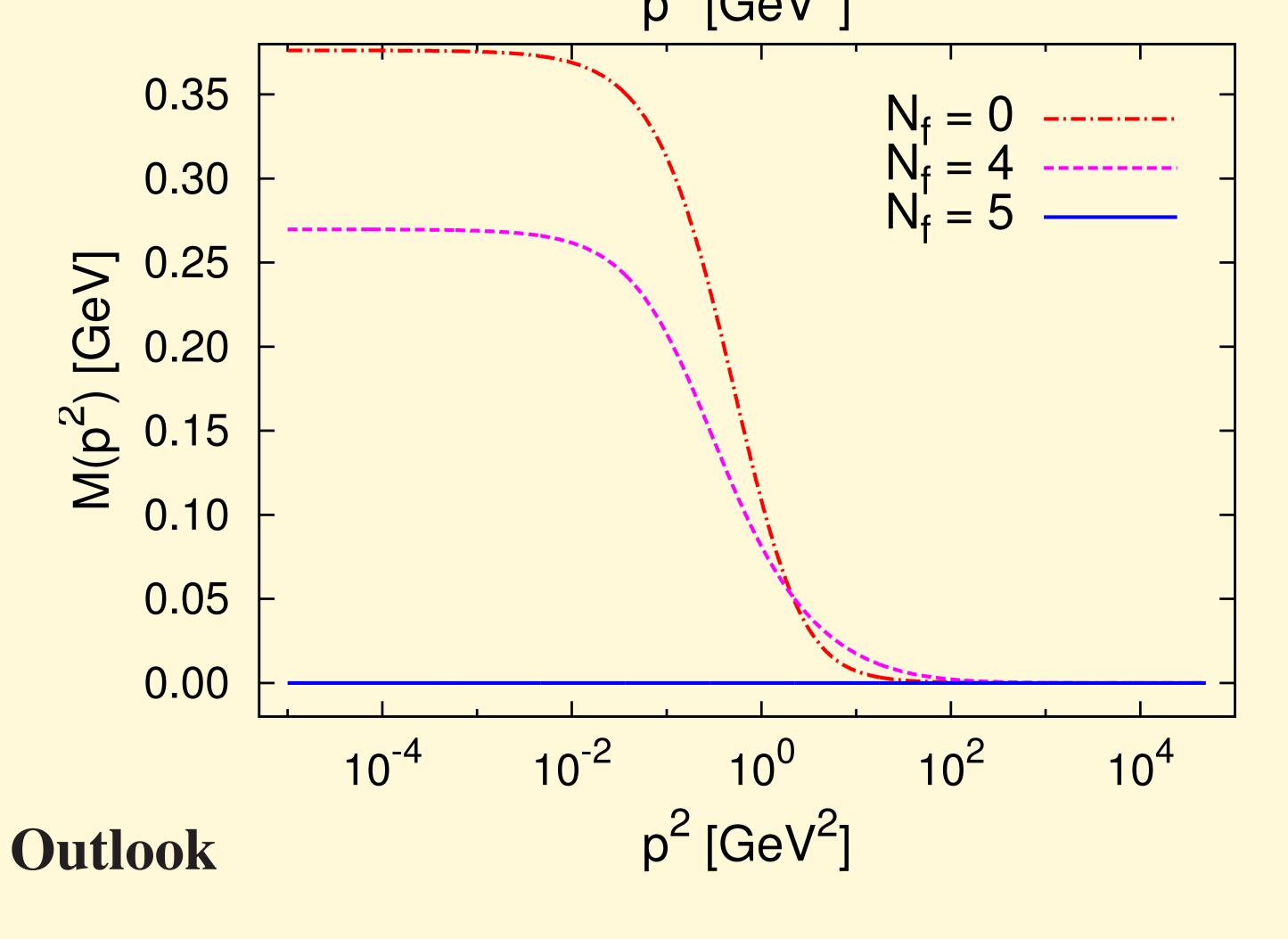

- Coupled set of nonlinear integral equations for non-perturbative Green's functions
- For a given Green's function the equations involve higher order Green's functions

Numerics

- Different iterative methods for selfconsistently solving DSEs available
- For details regarding the numerical solution see for instance ref. [2]

- Infinite tower \rightarrow truncation required
- Solve truncated equations selfconsistently
- Vertex Green's function may have complicated tensor structures \rightarrow models employed

Truncated DSEs for QCD propagators



Previous results [1] and outlook 3 2.5 2 1.5 1 0.5 0 10^{-4} 10^{-2} 10^{0} 10^{2} 10^{0} 10^{2} 10^{2} 10^{4} 10^{2} 10^{2} 10^{4} 10^{4}

- Dressed propagators are denoted by black blobs, dressed vertices by colored blobs
- Gluon DSE: tadpole and four-gluon diagrams are neglected
- Use a bare ghost-gluon vertex and models for quark-gluon and three-gluon vertex

Large N_f QCD

• Include N_f fundamentally charged quarks with vanishing bare mass

- Include ghost-gluon vertex selfconsistently
- Investigate influence of different three-gluon

• At some N_f^{crit} a phase transition into a chirally symmetric phase with walking coupling is expected

• Of interest for thermal QCD (phase transition) and technicolor theories (walking coupling)

• Multiple results on the lattice available, a previous study using DSEs exists. [1]

and quark-gluon vertex models on N_f^{crit}

References and acknowledgement

[1]M.Hopfer, C.S.Fischer, R.Alkofer, JHEP 1411(2014)035[2]M.Q. Huber, arXiv:1808.05227

F.Z. is grateful to the *Paul Urban Stipendienstiftung* for their financial support.