Composite Dark Matter from Sp(2N) gauge theories

Fabian Zierler

IBS-CTPU, Daejeon, February 28, 2024

mostly based on 2202.05191, 2304.07191, 2311.18549

slides available at: fzierler.github.io/talks/

arXiv:2304.07191v Singlets in gauge theories with fundamental matter

Ed Bennett,^{1, *} Ho Hsiao,^{2, †} Jong-Wan Lee,^{3, 4, 5, ‡} Biagio Lucini,^{1, 6, §} Axel Maas,^{7, ¶} Maurizio Piai,^{8, **} and Fabian Zierler^{7, ††}

Scattering of dark pions in an Sp(4) gauge theory

Yannick Dengler,^{*a*,*} Axel Maas^{*a*} and Fabian Zierler^{*a*,*b*} arXiv:2311.18549

Low-energy effective description of dark Sp(4) theories arXiv:2202.05191

Suchita Kulkarni,^a Axel Maas,^a Seán Mee,^a Marco Nikolic,^b Josef Pradler,^b Fabian Zierler^a

Singlet Mesons in Dark Sp(4) Theories arXiv:2210.11187v1

Fabian Zierler,^{*a*,*} Jong-Wan Lee,^{*b*,*c*} Axel Maas^{*a*} and Felix Pressler^{*a*}

based on work with: E.Bennett, Y.Dengler, H.Hsiao, S.Kulkarni, JW. Lee, B.Lucini, A.Maas, S.Mee, M.Nikolic, M.Piai, J.Pradler, F.Pressler

Outline

- Composite, self-interacting Dark Matter models
- Strongly Interacting Massive Particles (SIMPs)
- A specific model: Sp(4) with two Dirac fermions
- Lattice Field Theory and numerical results
- Conclusions for Phenomenology and model building

QCD inspired Dark Matter models

[1] e.g. Bertone, Hooper, Silk. [hep-ph/0404175] [2] e.g. PDG review and Famaey, McGaugh [1112.3960]

Dark Matter - Why?

- Strong observational evidence at many scales!
- Modified gravity, primordial black holes are alternatives
- New particles beyond the Standard Model (BSM) promising!

[1] see e.g. Bullock, Boylan-Kolchin [1707.04256], Tulin, Yu [1705.02358] Dark Matter properties

DM self-interaction phenomenologically allowed^[1] and potentially relevant for small-scale structure problems

 non-vanishing scattering cross-sections σ_{2DM→2DM}
 velocity dependence of σ_{2DM→2DM} preferred

QCD-like Dark Matter can those provide self-interactions!

Strongly Interacting Gauge Theories in DM Models

- With fermions: Global symmetries make DM stable
- With mediator: Dark sector coupled to SM

$$\underbrace{DM}_{\text{MMMMM}} \text{ mediator} (SM) \quad \mathcal{L}_{\text{DM}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi}_f (i D + m_f) \psi_f$$

- Non-vanishing self-scattering cross-section arise $\langle v\sigma_{\pi\pi
 ightarrow\pi\pi}
 angle
 eq 0$
- Relic density driven by strong processes

QCD Spectrum

- π, K, η light: pseudo-Goldstones
- Vectors and scalars light
- Light and broad 0^+ singlet f_0/σ
- Heavy 0^- singlet η'

 \Rightarrow $U(1)_A$ anomalously broken

Dark meson models

- Lightest meson multiplet is protected from decay into SM
 similar to isospin conservation in QCD
 - symmetry needs to be respected by mediator
- Lightest states: pseudo-Nambu-Goldstone bosons π \circ arise due to chiral symmetry breaking
- have stronger self-interactions than elementary models

Dark meson scattering: Determine DM relic density

Any model must predict the current density of DM correctly
 number density n can be calculated using Boltzmann equations

 $\partial_t n + 3Hn = f(\langle v\sigma_{ ext{number changing}}
angle)$

- Cross-sections $\langle \sigma v
 angle$ are input for Boltzmann equations \circ describe non-equilibrium dynamics
 - $\circ~H$ is the Hubble rate

[1] Hochberg et. al. [1402.5143] [2] Tulin, Yu [1705.02358], [3] Kondo et.al. [2205.08088] [4] Chu et.al. [2401.12283] **Relevant pion scattering channels**

- $3\pi
 ightarrow 2\pi$ (semi-annihilation) $^{[1]}$
- $2\pi
 ightarrow 2\pi$ (self-scattering)

 \circ self-scattering among DM $^{[2]}$

 \circ resonant enhancements $^{[3]}$

• $2n\pi
ightarrow 2\pi$ (multi-hadron bound states) $^{[4]}$

A concrete model:

Strongly Interacting Massive Particles (SIMPs)

Strongly Interacting Massive Particles (SIMPs)

- Depletion via $3{
m DM}
ightarrow 2{
m DM}$ $^{[1]}$, i.e. $3\pi
ightarrow 2\pi$

 \circ same as $KK
ightarrow 3\pi$ in QCD $^{[2]}$

 \circ Early universe: $SM \rightleftharpoons DM$ equilibrium

• Dark matter depletion process: *freeze-out*

• LO ChiPT matches relic density at $m_\pi pprox {\cal O}(100){
m MeV} - {\cal O}(1){
m GeV}$

Dark Matter with 3DM \rightarrow 2DM depletion and self-interactions

SIMPs at LO ChiPT

taken from Hochberg et.al. [1411.3727]

Other mass scales than QCD are relevant!

- Lagrangian has two free parameters: g^2 and m_f
 - one overall energy scale
 - $\circ\,$ one scale for explicit chiral symmetry breaking
- Overall scale should allow sufficiently heavy DM
- m_f should lead to parametrically light m_π \circ both scales can deviate strongly from QCD!

Lattice investigations of a larger parameter space are useful!

[1] Hochberg et. al. [1411.3727] [1512.07917] [2] Choi et.al. [1801.07726] Bernreuther et.al. [2311.17157]
 [3] Kulkarni et.al. [2202.05191]

Relevant channels and EFT descriptions

- decay to Standard Model: $2\pi o SM$ $^{[1]}$
- involvement of vector mesons: $\pi\pi o \pi
 ho$, $3\pi o \pi
 ho$ $^{[2]}$
- influence of light singlets: $\eta'\eta' o \pi\pi, \pi\pi o \eta'\pi$, \dots $^{[3]}$
- The relevance depends on the spectrum
 - \circ investigation of the meson spectrum important
 - lattice investigations inform EFT construction

A concrete model theory:

Two-flavour Sp(4) Gauge Theory

[1] Kosower (Phys.Lett.B. 1984) [2] Hochberg et. al. [1411.3727] [1512.07917]

SIMPs from Sp(4) gauge theory

- Pseudo-real representation: ^[1]
 ⇒ more pseudo-Goldstones

 ⇒ no fermionic bound states
- $N_f=2$: exactly 5 Goldstones \circ Allows $3{
 m DM}
 ightarrow 2{
 m DM}$ $^{[2]}$

Sp(4) with two fermions is a minimal SIMP DM realisation

Lagrangian of $Sp(4)_c$ with fermions

$${\cal L}_{Sp(4)} = -rac{1}{4} F_{\mu
u} F^{\mu
u} + \sum_{f=u,d} ar{\psi}_f (i D\!\!\!/ + m_f) \psi_f$$

• Higher symmetry than QCD-like theories

$$\Psi = egin{pmatrix} u_L \ d_L \ -SCu_R^* \ -SCd_R^* \end{pmatrix} = egin{pmatrix} u_L \ d_L \ ar{u}_R \ ar{d}_R \end{pmatrix} & C \dots ext{charge conj.} \ S \dots ext{colour matrix} \ S \dots ext{colour matrix} \ egin{pmatrix} \mathcal{L}_{Sp(4)} = i ar{\Psi} ar{\mathcal{P}} \Psi - rac{1}{2} \left(\Psi^T SCM \Psi + h.c.
ight) - rac{1}{4} F_{\mu
u} F^{\mu
u} \end{array}$$

ullet generators au_a in fundamental repr. $:S au_aS=- au_a^T$

ullet mass matrix M proportional to symplectic invariant

Meson multiplets of $Sp(4)_c$ with $N_f=2$

- $Sp(2N_f)$ flavour symmetry between $2N_f$ Weyl components
- Extra gauge invariant states: $q^T \dots q$ and $ar{q} \dots ar{q}^T$

$$Sp(4)_F: \quad 4\otimes 4=1\oplus 5\oplus 10$$

The global symmetries lead to a richer meson multiplet structure!

Extra meson states:

Diquarks and Anti-Diquarks

21

Pseudoscalar (PS) and vector (V) multiplets

The same patterns persist for other channels.

Non-perturbative input is needed:

The case for lattice investigations

The case for lattice investigations

- Theory is non-perturbative at low energies!
 - Lattice allows first-principles calculations
 - Errors are systematically improveable
- Effective field theories are powerful tools!
 - Lattice can calculate low-energy constants
 - provides connection to UV complete theory
- Scattering properties accessible on the lattice!

BSM/DM wishlist from the lattice

- 1. Masses and decay constants of dark hadrons
 o Non-singlet and singlet mesons, glueballs
- 2. Scattering of dark pions
 - $\circ~2\pi
 ightarrow 2\pi$ for self-interaction crossection
 - $\circ \; 3\pi
 ightarrow 2\pi$ for SIMP semi-annihilation
- 3. Applicability of χ PT and related EFTs

Lattice Investigations:

Quantitative Insights

textbooks: e.g. Montvay, Münster 1997 Degrand, Detar 2006 Gattringer, Lang 2010 Lattice setup

 \bullet Euclidean action ${\cal S}$ on hypercubic lattice

$$\langle O
angle = rac{1}{Z} \int {\cal D}[A_\mu,\psi,ar{\psi}] e^{-S[A_\mu,\psi,ar{\psi}]} O[A_\mu,\psi,ar{\psi}]$$

- Lattice regulator: finite spacing a (UV), finite extent L (IR)

- Calculate observable $\langle O
 angle$ on finite lattice
- Extrapolate to the continuum: a
 ightarrow 0 , $L
 ightarrow \infty$

Lattice spectroscopy: Getting meson masses

• Construct operator with same quantum numbers, e.g.

$$O_{\pi} = ar{u} \gamma_5 d \qquad \qquad J^P = 0^- (ext{non-singlet})$$

• Spectroscopy for meson from its correlator $C_M(t)$

$$egin{aligned} C(t\!=\! au\!-\!t') &= \sum_{ec{x},ec{y}} \langle O(ec{x}, au) O^\dagger(ec{y},t')
angle \ &= \sum_{ec{x},ec{y}} \langle 0|O(ec{x}, au)|n
angle \langle n|O^\dagger(ec{y},t')0|
angle rac{e^{-E_nt}}{2E_n} \end{aligned}$$

$$C(t= au-t')=Ae^{-E_0t}+\mathcal{O}(e^{-\Delta Et})$$

- Ground state mass ${E}_0=m$, decay constant $\propto \sqrt{A}$

Non-singlet spectrum

The pseudoscalar and vector mesons are the lightest non-singlets.²⁹

[1] Bennett et. al. [2304.07191]

The pseudoscalar singlet η' is surprisingly light!

Phenomenologically relevant:

 m_ρ > m_{η'} different from QCD
 relevant low-energy dof
 η' relevant for ππ scattering
 more accessible channels for

decays into SM

Interesting! Is this surprising?

Consider different theories:

• Large
$$N_c : m_{\eta'} - m_\pi \propto N_f/N_c$$

- $\circ \; N_f = 2 \; {\sf could} \; {\sf be} \; "{\sf small}"$
- $\circ~N_c=4$ could be "large"

SU(2) and SU(3) comparison:

- Similarities:generic $N_f\!=\!2$ feature?
- QCD: strong N_f dependence
- Differences may arise $m_\pi/m_
 ho o 0$ mass driven by flavour content!

Consequences for Dark Matter

- Mass hierarchies: limit χ PT validity
 - \circ inclusion of other states than π required, e.g. η' and ho
 - additional tests needed (fermions are too heavy)
- Light unprotected states η', π^0 allow decays into SM \circ no protection from symmetry

Are these fermion masses phenomenologically relevant?

Dark Matter Scattering on the Lattice

- Pions are in the 5-dimensional representations
- A two pion scattering is in one of three irreps $5 imes 5 = 14 \oplus 10 \oplus 1$
- Corresponds to the usual QCD channels

 $\circ~14 \Leftrightarrow {\sf isospin}~I=2$ in QCD, e.g. $\pi^+\pi^+$

 $\circ \ 10 \Leftrightarrow {\sf isospin} \ I=1$ in QCD, e.g. $\pi\pi o
ho$

 $\circ~0 \Leftrightarrow {\sf isospin}~I=0$ in QCD, e.g. $\pi\pi o \sigma/f_0$

Scattering information from the lattice

- Scattering phase shift $\delta_0(p)$ from finite volume energy

$$an(\delta_0(q)) = rac{\pi^{rac{3}{2}}q}{{\mathcal Z}_{00}^{ec 0}(1,q^2)}, \hspace{0.3cm} q = p^*rac{L}{2\pi}
onumber \ \cosh\left(rac{E_{\pi\pi}}{2}
ight) = \cosh(m_{\pi\pi}) + 2\sin\left(rac{p^*}{2}
ight)^2$$

- Low-velocity behaviour: Scattering length
 - \Rightarrow relation between $\pi\pi$ energy $E_{\pi\pi}$ and m_{π} on a lattice $^{[1]}$

$$\frac{\delta E_{\pi\pi}}{m_{\pi}} = \frac{4\pi m_{\pi} a_0}{(m_{\pi}L)^3} \left(1 + c_1 \frac{m_{\pi}a_0}{m_{\pi}L} + c_2 \left(\frac{m_{\pi}a_0}{m_{\pi}L} \right)^2 \right)$$

34

[1] Dengler et.al. [2311.18549] see also Arthur et. al. [1412.4771] for SU(2) Blum et.al. [2301.09286] for SU(3)

First investigation of isospin-2 scattering

- repulsive $\pi\pi$ interaction
- few lattice energy levels

 $\texttt{available} \Rightarrow \texttt{systematics}$

- finite volume effects present
- roughly matches ChiPT

First investigation of isospin-2 scattering

- phase shift $\delta(p)$ gives velocity dependence $\langle \sigma v
 angle$
- No velocity dependence in isospin-2 channel
- Overall scale chosen to match low velocity behaviour

Summary

- Full light hadron spectrum of two-flavour Sp(4) \circ surprisingly light η'
 - input for EFTs: masses and decay constants
 - \circ first determination of isospin-2 $\pi\pi$ scattering

Outlook

- Full scattering analysis of $2\pi o 2\pi$ and $3\pi o 2\pi$ \circ velocity dependence from strong resonances?
- Better understanding of singlets and scattering states
- Singlet spectroscopy closer to the chiral limit

Thank you