Beyond the Standard Model with Sp(2N) Gauge Theory:

Meson Spectroscopy and Scattering

Fabian Zierler

Exotic Hadrons, Swansea, July 3, 2024

2202.05191, 2304.07191, 2405.01388, 2405.05765, 2405.06506

based on work with : E.Bennett, Y.Dengler, N.Forzano, DK.Hong,

H.Hsiao, S.Kulkarni, JW.Lee, CJD.Lin, B.Lucini, A.Maas, S.Mee,

M.Nikolic, M.Piai, J.Pradler, F.Pressler, D.Vadacchino

1

QCD-like gauge theories

- New non-SM gauge force with fermions
 - Composite Higgs Models: hyper-gluons and hyperquarks
 - Dark Matter Models: dark gluons and dark quarks
- Depending on the BSM model they can carry SM charges or not

- I will use the QCD nomenclature:
 - \circ e.g. π : 0^- nonsinglet, ho: 1^- nonsinglet, \ldots
 - these states are **not** the QCD hadrons
 - \circ but they are similar in terms of their fermion structure

[1] see e.g. Bullock,Boylan-Kolchin [1707.04256], Tulin, Yu [1705.02358] QCD-like Gauge Theories in Dark Matter Models

- With fermions: Global symmetries make Dark Matter stable
- With mediator: Dark sector coupled to SM
- Lightest dark Hadrons (here pions) are DM candidates

$$\underbrace{\mathrm{DM}}_{\mathrm{M}} = -\frac{1}{2} \mathrm{Tr} F_{\mu\nu} F^{\mu\nu} + \bar{\psi}_f (i \not\!\!\!D - m_f) \psi_f$$

- Non-vanishing self-scattering cross-section arise $\langle v\sigma_{\pi\pi
 ightarrow\pi\pi}
 angle
 eq 0$
- Dark Matter Relic density driven by strong processes
 - Scattering cross-sections are required input

Theories With Multiple Fermion Representations

$${\cal L} = -rac{1}{2} {
m Tr} F_{\mu
u} F^{\mu
u} + ar{\psi}_i \left(i D \!\!\!/ - m_i
ight) \psi_i + ar{\Psi}_j \left(i D \!\!\!/ - m_j
ight) \Psi_j$$

- Gauge theory of group G with field strength tensor $F_{\mu
 u}$
- Two species of fermions ψ and Ψ under different irreps of G

- Composite Higgs Models with partial top compositeness
 - Composite Higgs from one Goldstone sector
 - \circ Composite Top partner from $\psi\psi\Psi$ or $\psi\Psi\Psi$
 - \circ Global Symmetries must contain SU(3) and $SU(2) imes U(1)^4$

Chiral Symmetry and Goldstone Bosons

- One breaking pattern for every fermion representation \circ complex: $SU(N_f) imes SU(N_f) o SU(N_f)$
 - \circ pseudoreal: $SU(2N_f)
 ightarrow Sp(2N_f)$
 - \circ real: $SU(2N_f)
 ightarrow SO(2N_f)$
- And one axial U(1) for every representation
 - one linear combination broken by axial anomaly!
 - \circ Additional U(1) Goldstone at finite N_c for multirep!

Why Symplectic Gauge Theories?

- Fermions in real or pseudo-real representations
- **Dark Matter**: Strongly Interactive Massive Particles
 - \circ Semi-annihilation process: $3\pi
 ightarrow 2\pi$ sets DM relic density
 - $\circ~Sp(2N)$ groups with $N_f>2$ favoured by χ PT over $SU(N),\,SO(N)$
- Composite Higgs Models: with partial top compositeness
 - two fundamental fermions: allow pseudo-Goldstone Higgs
 - three anti-symmetric fermions: top composite partner

BSM wishlist from the lattice

- 1. Masses and decay constants of dark hadrons
 o Non-singlet and singlet mesons, glueballs
- 2. Scattering of pions
 - $\circ \ 2\pi
 ightarrow 2\pi$ for self-interaction crossection
 - $\circ \; 3\pi
 ightarrow 2\pi$ for SIMP semi-annihilation
- 3. Applicability of χ PT and related EFTs

Meson Spectrum of two-flavour Sp(4)

[1] Kosower (Phys.Lett.B. 1984) [2] Hochberg et. al. [1411.3727] [1512.07917] SIMPs from Sp(4) gauge theory

- Pseudo-real representation: [1]
 - \Rightarrow more pseudo-Goldstones
 - \Rightarrow no fermionic bound states
- $N_f=2$: exactly 5 Goldstones
 - \circ Allows $3\pi
 ightarrow 2\pi$ $^{[2]}$ DM semi-

annihilation

Sp(4) with two fermions is a minimal SIMP DM realisation [1] Ryttov, Sannino [0809.0713] [2] Bennett et. al. [1912.06505]

Pseudoscalar (PS) and vector (V) multiplets

The same patterns persist for other channels. Similar for anti-symmetric fermions Non-singlet spectrum

The pseudoscalar and vector mesons are the lightest non-singlets.¹¹

Bennett et. al. [1909.12662]

The pseudoscalar singlet η' is surprisingly light!

• Phenomenologically relevant: $\circ \; m_
ho > m_{\eta'} \; {\sf different from QCD}$ relevant low-energy dof \circ η' relevant for $\pi\pi$ scattering more accessible channels for decays into SM

Interesting! Is this surprising?

Consider different theories:

- Large N_c : $m_{\eta'} m_\pi \propto N_f/N_c$
 - $\circ \; N_f = 2 \; {\sf could} \; {\sf be} \; "{\sf small}"$
 - $\circ~N_c=4$ could be "large"

SU(2) and SU(3) comparison:

- Similarities:generic $N_f = 2$ feature?
- QCD: strong N_f dependence
- Differences may arise $m_\pi/m_
 ho o 0$ mass driven by flavour content!

Consequences for Dark Matter

• Mass hierarchies: limit χ PT validity

 \circ inclusion of other states than π required, e.g. η' and ρ

additional tests needed (fermions are fairly heavy)

• Light unprotected states such as η' allow decays into SM \circ no protection from symmetry

• could become relevant in thermal history of DM

Isospin-2 $\pi\pi$ scattering in two-flavour Sp(4)

Dark Matter Scattering on the Lattice

- Pions are in the 5-dimensional representations
- A two pion scattering is in one of three irreps $5 imes5=14\oplus10\oplus1$
- Corresponds to the usual QCD channels
 - $\circ~14 \Leftrightarrow {\sf isospin}~I=2$ in QCD, e.g. $\pi^+\pi^+$
 - $\circ~10 \Leftrightarrow {
 m isospin}~I=1$ in QCD, e.g. $ho o \pi\pi$

 $\circ~0 \Leftrightarrow {\sf isospin}~I=0$ in QCD, e.g. $\sigma/f_0 o \pi\pi$

Scattering information from the lattice

- Scattering phase shift $\delta_0(p)$ from finite volume energy

$$an(\delta_0(q)) = rac{\pi^{rac{3}{2}}q}{{\mathcal Z}_{00}^{ec 0}(1,q^2)}, \hspace{0.3cm} q = p^*rac{L}{2\pi}
onumber \ \cosh\left(rac{E_{\pi\pi}}{2}
ight) = \cosh(m_{\pi\pi}) + 2\sin\left(rac{p^*}{2}
ight)^2$$

• Low-velocity behaviour: Scattering length a_0

$$p \cot {\delta_0} = -rac{1}{a_0} + rac{p^2}{2r_0^{-1}} + \mathcal{O}(p^4)$$

First investigation of isospin-2 scattering

- few lattice energy levels available \Rightarrow systematics
- repulsive, roughly matches $\chi {\rm PT}$

• first step towards other channels and resonances

Isosinglet Mesons in Mixed Representation Sp(4)

The axial U(1) states: Isosinglet Pseudoscalars

- Two fundamental, three anti-symmetric fermions
- pseudoscalar flavour-singlets: similar to η and η' of QCD
- probed by the following operators

$$egin{aligned} O_{\eta^{ ext{f}}} &= \left(ar{\psi}_1 \gamma_5 \psi_1 + ar{\psi}_2 \gamma_5 \psi_2
ight) / \sqrt{2} \ O_{\eta^{ ext{as}}} &= \left(ar{\Psi}_1 \gamma_5 \Psi_1 + ar{\Psi}_2 \gamma_5 \Psi_2 + ar{\Psi}_3 \gamma_5 \Psi_3
ight) / \sqrt{3} \end{aligned}$$

- These two states will mix: Light PNGB state η'_l + heavier state η'_h \circ mixing angle $\phi
 eq 0$
 - Effective field theory in chiral limit is known

We are able to determine their masses and mixing angle!

- Encouraging proof of principle
- Caveat: Only heavy fermion masses accessible for now!

Example: Hadrons on a selected ensemble

Mesons and Baryons are accesible with our lattice methods ²²

Summary

- Full light hadron spectrum of two-flavour Sp(4)

 surprisingly light η' for moderately heavy fermions
 first determination of isospin-2 ππ scattering
- Exploratory hadron spectrum of Sp(4) with $N_f=2^{(f)}+3^{(as)}$

Outlook

- Full scattering analysis of $2\pi
 ightarrow 2\pi$ and $3\pi
 ightarrow 2\pi$ and resonances
- Better understanding of singlets and scattering states:
- Singlet spectroscopy closer to the chiral limit
- Lighter fermions for mixed-representation