Singlet Meson Spectroscopy & Mixing in Sp(4)

Fabian Zierler

LATTICE 2024, Liverpool, July 28 - August 3, 2024

based on 2405.05765 with

E.Bennett, N.Forzano, D.K. Hong, H. Hsiao, J.W.Lee,

C.J.D. Lin, B.Lucini, M.Piai, D.Vadacchino

slides at fzierler.github.io/talks/, data + analysis code on Zenodo

see e.g. Ferretti,Karateev [1312.5330], Ferretti [1604.06467] Ayyar et.al. [1710.00806] [1801.05809] [1802.09644] Bergner,Piemonte [2008.02855][2111.15335] Cossu et. al. [1904.08885] Bennett et.al. [2202.05516] [2311.14663]

Theories With Multiple Fermion Representations

$${\cal L}=-rac{1}{2}{
m Tr}{
m F}_{\mu
u}{
m F}^{\mu
u}+ar{{
m Q}}^{
m i}\left({
m i}D\!\!\!\!/-{
m m}_{
m i}^{
m f}
ight){
m Q}^{
m i}+ar{{
m \Psi}}^{
m j}\left({
m i}D\!\!\!\!/-{
m m}_{
m j}^{
m as}
ight){
m \Psi}^{
m j}$$

- Gauge theory of group G with field strength tensor $F_{\mu
 u}$
- Two species of fermions Q and Ψ under different irreps of G Applications:
- **Composite Higgs+top**(fundamental and antisymmetric fermions)
- Models of supersymmetric physics (fundamental + adjoint)

[1] Kosower (Phys.Lett.B.144, 1984) Witten (Nucl.Phys.B.223, 1983) Peskin (Nucl.Phys.B.175, 1980) [2] Witten (Nucl.Phys.B.149, 1979) (Nucl.Phys.B.156, 1979) Veneziano (Nucl.Phys.B.159, 1979)

```
[3] Belyaev et.al. [1512.07242]
```

Chiral Symmetry and Extra Goldstone Bosons

- ullet One breaking pattern for every fermion representation $^{[1]}$
 - $\circ \; \mathsf{complex} \colon SU(N_f) imes SU(N_f) o SU(N_f)$
 - \circ pseudoreal: $SU(2N_f)
 ightarrow Sp(2N_f)$
 - \circ real: $Sp(2N_f)
 ightarrow SO(2N_f)$
- And one axial U(1) for each representation
 - \circ one (combination of) U(1) broken by axial anomaly! $^{[2]}$

 \circ Additional U(1) Goldstone for multiple representations! $^{[3]}$

• mixed state with contributions from different reps

table taken from Feretti [1604.06467], see also Ferretti,Karateev [1312.5330]

Composite Higgs + Top Realisations

$G_{ m HC}$	ψ	X	Restrictions	G/H	
$SO(N_{\rm HC})$	$5 imes \mathbf{F}$	$6 imes \mathbf{Spin}$	$N_{ m HC} = 7,9$	SU(5) SU(6) II(1)	
${ m SO}(N_{ m HC})$	$5 imes \mathbf{Spin}$	$6 imes \mathbf{F}$	$N_{\rm HC} = 7,9$	$\overline{SO(5)} \overline{SO(6)} \overline{O(1)}$	
$\operatorname{Sp}(2N_{\mathrm{HC}})$	$5 imes \mathbf{A}_2$	$6 imes \mathbf{F}$	$2N_{\rm HC} = 4$	$rac{\mathrm{SU}(5)}{\mathrm{SO}(5)} rac{\mathrm{SU}(6)}{\mathrm{Sp}(6)} \cdot \mathrm{U}(1)$	
${ m SU}(N_{ m HC})$	$5 imes \mathbf{A}_2$	$3 imes (\mathbf{F}, \overline{\mathbf{F}})$	$N_{\rm HC} = 4$	$SU(5)$ $SU(3) \times SU(3)$ $U(1)$	
$SO(N_{\rm HC})$	$5 imes \mathbf{F}$	$3 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$N_{\rm HC} = 10$	$\overline{\mathrm{SO}(5)}$ $\overline{\mathrm{SU}(3)_D}$ $\overline{\mathrm{U}(1)}$	
$\operatorname{Sp}(2N_{\mathrm{HC}})$	$4 \times \mathbf{F}$	$6 imes \mathbf{A}_2$	$2N_{\rm HC} = 4$	$\frac{SU(4)}{SU(6)}$ $\frac{SU(6)}{SU(1)}$	
$SO(N_{\rm HC})$	$4 imes \mathbf{Spin}$	$6 imes \mathbf{F}$	$N_{\rm HC} = 11$	$Sp(4) SO(6 \circ (1))$	
$SO(N_{\rm HC})$	$4 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$6 imes \mathbf{F}$	$N_{\rm HC} = 10$	$SU(4) \times SU(4)' SU(6)$	
${ m SU}(N_{ m HC})$	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$6 \times \mathbf{A}_2$	$N_{\rm HC} = 4$	$\operatorname{SU}(4)_D$ $\operatorname{SO}(6] \cup (1)$	
$SU(N_{\rm HC})$	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 \times (\mathbf{A}_2, \overline{\mathbf{A}}_2)$	$N_{\rm HC} = 5, 6$	$\frac{\mathrm{SU}(4) \times \mathrm{SU}(4)'}{\mathrm{SU}(4)_D} \frac{\mathrm{SU}(3) \times \mathrm{SU}(3)'}{\mathrm{SU}(3)_D} \mathrm{U}(1)$	

Table 6. Subclass of models that is likely to be outside of the conformal window, together withthe coset they give rise to after spontaneous symmetry breaking.

Our model: Sp(4) with 2 fundamental + 3 antisymmetric

$$\mathcal{L} = -rac{1}{2} \mathrm{Tr} \mathrm{F}_{\mu
u} \mathrm{F}^{\mu
u} + ar{\mathrm{Q}}^{\mathrm{i}} \left(\mathrm{i} \not\!\!\!D - \mathrm{m}^{\mathrm{f}}_{\mathrm{i}}
ight) \mathrm{Q}^{\mathrm{i}} + ar{\Psi}^{\mathrm{j}} \left(\mathrm{i} \not\!\!\!D - \mathrm{m}^{\mathrm{as}}_{\mathrm{j}}
ight) \Psi^{\mathrm{j}}$$

- Non-perturbative input needed for pheno \Rightarrow Lattice
- 5+20+1 pseudo-Goldstones + $1~U(1)_A$ state
- ullet The two U(1) states will mix: both are 0^- iso-singlets
- First explorations with heavy dynamical fermions
- Goal: Determine mass spectrum and mixing angle
- This is the first study of singlet mesons in this theory! coset: $\mathbf{U}(\mathbf{1}) \times \frac{SU(4)}{Sp(4)} \times \frac{SU(6)}{SO(6)}$

Other aspects of Sp(4) gauge theories at Lattice2024:

- Spectroscopy & spectral densities (N.Forzano, Wednesday 11:35)
- Finite-T phase transitions (**D.Mason, Wednesday 12:15**)
- $\pi\pi$ scattering and Dark Matter (Y.Dengler, Thursday 10:00)
- Chimera baryon ($QQ\psi$) spectroscopy (H.Hsiao, Thursday 11:35)

[1] e.g. Belyaev et.al. [1610.06591], Cacciapaglia et.al. [1902.06890] Franzosi et.al. [2106.12615] [2] DeGrand et.al. [1605.07738] The axial U(1) states

- pseudoscalar flavour-singlets: similar to η and η' of QCD
- Potentially light singlet can have large pheno implications!
- probed by the following operators:

$$egin{aligned} O_{\eta^{ ext{f}}} &= \left(ar{Q}^1 \gamma_5 Q^1 + ar{Q}^2 \gamma_5 Q^2
ight) / \sqrt{2} \ O_{\eta^{ ext{as}}} &= \left(ar{\Psi}^1 \gamma_5 \Psi^1 + ar{\Psi}^2 \gamma_5 \Psi^2 + ar{\Psi}^3 \gamma_5 \Psi^3
ight) / \sqrt{3} \end{aligned}$$

- These two states will mix: Light PNGB state η'_l + heavier state η'_h \circ mixing angle in general $\phi
 eq 0$
 - \circ Effective field theory in chiral limit has been developed $^{[2]}$

Lattice Investigation: Masses

- Variational Analysis with $O_{\eta^{\mathrm{f}}}$ and $O_{\eta^{\mathrm{as}}}$ operators
- Several levels of Wuppertal smearing

$$\begin{split} \langle \bar{O}_{\eta^{\mathrm{as}}}(x)O_{\eta^{\mathrm{as}}}(y) \rangle &= -\bar{\mathbb{X}} \underbrace{\bigvee_{\Psi}} + N_{\mathrm{as}} \underbrace{\otimes}_{\Psi} \underbrace{\bigvee_{\Psi}} \\ \langle \bar{O}_{\eta^{\mathrm{f}}}(x)O_{\eta^{\mathrm{f}}}(y) \rangle &= -\bar{\mathbb{X}} \underbrace{\bigvee_{\Psi}} + N_{\mathrm{f}} \underbrace{\otimes}_{\Psi} \underbrace{\bigotimes_{\Psi}} \\ Q \\ \langle \bar{O}_{\eta^{\mathrm{f}}}(x)O_{\eta^{\mathrm{as}}}(y) \rangle &= +\sqrt{N_{\mathrm{as}}N_{\mathrm{f}}} \underbrace{\otimes}_{\Psi} \underbrace{\bigvee_{\Psi}} \underbrace{\bigvee_{\Psi}} \\ \langle \bar{O}_{\eta^{\mathrm{f}}}(x)O_{\eta^{\mathrm{as}}}(y) \rangle &= +\sqrt{N_{\mathrm{as}}N_{\mathrm{f}}} \underbrace{\otimes}_{\Psi} \underbrace{\bigvee_{\Psi}} \underbrace{\bigvee_{\Psi$$

- $N_{
 m f}$ and $N_{
 m as}$ enhance singlet contributions
- ullet non-vanishing fermion masses $(m_{
 m f},m_{
 m as})$ suppress them

8

Available Dynamical Ensembles

Label	eta	am_0^{as}	$am_0^{ m f}$	N_t	N_s	$N_{ m conf}$
M 1	6.5	-1.01	-0.71	48	20	479
M2	6.5	-1.01	-0.71	64	20	698
M3	6.5	-1.01	-0.71	96	20	436
M4	6.5	-1.01	-0.70	64	20	709
M 5	6.5	-1.01	-0.72	64	32	295

- Ensembles generated using GPUs with GRID
- Measurements performed with HiRep on CPUs

Results: Effective masses for η_l' and η_h'

- Variational analysis for correlation matrix $C_{ij}(t)$
- $n^{
 m th}$ eigenvalue falls off exponentially with energy E_n
- \bullet Masses from fits to correlator at large t

Results: Pseudoscalar Singlet Masses

Spectrum likely dominated by heavy fermion masses

Lattice Investigation: Mixing Angle

- Obtained from operator mixing (no signal for decay constants)
- Use of flavour basis justifies use of single mixing angle ^[1] $\begin{pmatrix} \langle 0|O_{\eta^{\mathrm{f}}}|\eta_{l}'\rangle & \langle 0|O_{\eta^{\mathrm{as}}}|\eta_{l}'\rangle \\ \langle 0|O_{\eta^{\mathrm{f}}}|\eta_{h}'\rangle & \langle 0|O_{\eta^{\mathrm{as}}}|\eta_{h}'\rangle \end{pmatrix} = \begin{pmatrix} A_{\mathrm{f}}^{\eta_{l}'} & A_{\mathrm{as}}^{\eta_{l}'} \\ A_{\mathrm{f}}^{\eta_{h}'} & A_{\mathrm{as}}^{\eta_{h}'} \end{pmatrix} \equiv \begin{pmatrix} A_{\eta_{l}'}\cos\phi & A_{\eta_{l}'}\sin\phi \\ -A_{\eta_{h}'}\sin\phi & A_{\eta_{h}'}\cos\phi \end{pmatrix}$
- Matrix elements are obtained from the eigenvectors of the GEVP
- \bullet Expected to be constant for all timeslices t
- Test for dominance of fermion masses:
 - $\circ \ m_{ ext{fermions}} o \infty$ implies that $\phi o 0$

Results: Mixing Anlge ϕ small

• Consistently small mixing angles

Label	eta	N_t	N_s	$\phi/^{\circ}$
M 1	6.5	48	20	6.15(83)
M2	6.5	64	20	6.07(63)
M3	6.5	96	20	6.16(66)
M4	6.5	64	20	7.44(58)
M 5	65	64	32	6 61(54)

Results: Meson and baryon spectrum of single ensemble

14

Summary

- First direct measurement of singlet mesons in multirep theory
- Extraction of masses and mixing angles possible!
- Currently restricted to heavy dynamical fermions
- So far only one lattice spacing

Outlook

- Different lattice spacings (i.e. different values of β)
- Scalar singlet $0^+~f_0/\sigma$ channel, and lighter fermions
- Mixing with 0^- glueball states

Back-up slides

Topology of ensembles

ullet not frozen, but correlations in topological charge Q

Configurations chosen such that plaquette is uncorrelated

Glueballs potentially relevant

• Suggested by quenched spectrum

Lattice spectroscopy: Getting meson masses

- Construct operator with same quantum numbers
- Energy levels from Euclidean correlator

$$C_{\mathcal{O}}(t) = \sum_n rac{1}{2E_n} \langle 0 | \mathcal{O} | n
angle^* \langle n | \mathcal{O} | 0
angle e^{-E_n t}.$$

• For mesons a generic correlator

$$C(t-t') = \sum_{\vec{x},\vec{y}} \left(\underbrace{\vec{x},t}_{\vec{y},\vec{y}} + \underbrace{\vec{x},t}_{\vec{y},\vec{y}} + \underbrace{\vec{x},t}_{\vec{y},\vec{y}} \right) + \underbrace{\operatorname{const.}}_{=|\langle 0|O|0\rangle|^2}$$

$$24 \times 12^3, \beta = 6.9, SP(4), m_q = -0.9, n_{\rm src} = 128$$

Flavour symmetry: Pseudo-real representation

- Higher symmetry than QCD-like (complex rep) theories
- Mixing of left- and right-handed Weyl components

$$egin{aligned} \Psi &= egin{pmatrix} u_L \ d_L \ -SCu_R^* \ -SCd_R^* \end{pmatrix} = egin{pmatrix} u_L \ d_L \ ar{u}_R \ ar{d}_R \end{pmatrix} & C \dots ext{charge conj.} \ S \dots ext{colour matrix} \ \mathcal{L}_{ ext{DM}} &= iar{\Psi}
ot\!\!/ \Psi - rac{1}{2} ig(\Psi^T SCM \Psi + h.c. ig) \end{aligned}$$

- \bullet Mass matrix M proportional to symplectic invariant tensor
- ullet generators $au_a:S au_aS=- au_a^T$
- Very similar pattern for real representation